If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50x^2+100x-130=0
a = 50; b = 100; c = -130;
Δ = b2-4ac
Δ = 1002-4·50·(-130)
Δ = 36000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{36000}=\sqrt{3600*10}=\sqrt{3600}*\sqrt{10}=60\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-60\sqrt{10}}{2*50}=\frac{-100-60\sqrt{10}}{100} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+60\sqrt{10}}{2*50}=\frac{-100+60\sqrt{10}}{100} $
| -9(2+3k)=252 | | -6+9(3k-9)=-141 | | -4+2x-x-11=13 | | 0.11(y-4)+0.11y=0.002y-0.40 | | 4/3x+6/4x=3 | | -6x+5=-x+3x | | 9(1z+42)=3(6z-18) | | 3-2x+5=-9x | | 9(12+42)=3(6x-18) | | 2t²-8t-15=0 | | 1x+2x+3x=123234 | | 0.18x+0.2(x-4)=0.01(2x-2) | | 0=(2x+6)(2x+15) | | 3n3+9n2n2+12n+27÷B2n2+18n=1 | | 0.12x+0.5(x-3)=0.01(2x-5) | | 390=(2x+6)(2x+15) | | X=3x3+8 | | 12n-7-3=11 | | 4y=(3-3y)+11 | | 0.17x+0.8(x-1)=0.01(3x-1) | | 2x2−x(−3x+3)+(−3x+3)2=2 | | 34.8/x=18.8 | | 45/x=15 | | 46-27=x | | 20-1/5d=3/10d+14 | | 8×x=63.2 | | 320000*0.14=p | | -22x+16=50 | | 6.25=2(3.14)*r | | 2x+4=2(3x-6) | | 5x(x+1)=-2x(x-2) | | 17g+-3g+3=17 |